Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ashley T. Hulme* and Derek A. Tocher

Christopher Ingold Laboratory, Department of Chemistry, 20 Gordon St., London WC1H 0AJ, England

Correspondence e-mail: a.hulme@ucl.ac.uk

Kev indicators

Single-crystal X-ray study T = 150 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.044 wR factor = 0.123 Data-to-parameter ratio = 11.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-Amino-5-fluoropyrimidin-2(1H)-one-2-amino-5-fluoropyrimidin-4(3H)-onewater (1/1/1)

The title co-crystal, C₄H₄FN₃O·C₄H₄FN₃O·H₂O, has one molecule of 4-amino-5-fluoropyrimidin-2(1H)-one, one molecule of its isomer 2-amino-5-fluoropyrimidin-4(3H)-one and a molecule of water in the asymmetric unit. 4-Amino-5fluoropyrimidin-2(1H)-one is commonly known as 5-fluorocytosine.

Received 1 June 2005 Accepted 8 June 2005 Online 17 June 2005

Comment

The title co-crystal, (I) (Fig. 1), was grown by evaporation of a 50% aqueous solution of ethanol saturated with 5-fluorocytosine. Two different crystal forms were obtained from this solution. The major crystallisation product exhibited a block morphology and was the known monohydrate of 5-fluorocytosine (Louis et al., 1982). A small number of needle-shaped crystals were observed as the minor crystallization product. These crystals proved to be the co-crystal, (I). The isomer of 5fluorocytosine was assumed to have been present in the commercial sample of 5-fluorocytosine purchased from Fluorochem (98% pure, Old Glossop, UK) that was used to prepare the initial solution.

The simplest hydrogen-bonded subunit observed is a twomolecule unit, containing one molecule of each isomer. Each molecule of 5-fluorocytosine forms three hydrogen bonds to a

Figure 1 The asymmetric unit of the title co-crystal. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres. Dotted lines indicate hydrogen bonds.

© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 2The hydrogen bonded ribbon present in the title structure. Dotted lines indicate hydrogen bonds.

molecule of the isomer (N4—H2···O14, N13—H13···N3 and N12—H12···O2), forming two adjoining $R_2^2(8)$ hydrogen bond rings (Table 1). Two different $R_2^4(8)$ hydrogen-bond rings join these subunits together to form a ribbon (Fig. 2).

The role of the water molecules in the structure is to join together the ribbons into a hydrogen-bonded sheet. The water hydrogen bonds to two molecules from one ribbon, acting both as donor and acceptor, and as a donor to a third molecule, from a different ribbon (Table 1). The ribbons form stepped sheets, parallel to the $01\overline{1}$ planes (Fig. 3).

Within the ribbon structure, there is also a close $F \cdots F$ contact, between F5 and F15, of 2.9003 (15) Å; however, this is likely to have arisen as a consequence of the adjacent $R_2^4(8)$ hydrogen-bond ring.

Experimental

Crystals were grown from a 50% aqueous ethanol solution, by evaporation at room temperature. The crystal form reported was the minor crystallisation product.

Crystal data

$C_4H_4FN_3O\cdot C_4H_4FN_3O\cdot H_2O$	Z = 2
$M_r = 276.22$	$D_x = 1.708 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 5.4122 (16) Å	Cell parameters from 1511
b = 8.447 (2) Å	reflections
c = 12.083 (4) Å	$\theta = 3.0 – 28.1^{\circ}$
$\alpha = 89.454 (5)^{\circ}$	$\mu = 0.16 \text{ mm}^{-1}$
$\beta = 85.718 \ (5)^{\circ}$	T = 150 (2) K
$\gamma = 77.096 \ (4)^{\circ}$	Needle, colourless
$V = 536.9 (3) \text{ Å}^3$	$0.44 \times 0.14 \times 0.11$ mm

Data collection

Bruker SMART APEX	2405 independent reflections
diffractometer	1884 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.018$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 6$
$T_{\min} = 0.934, T_{\max} = 0.984$	$k = -11 \rightarrow 10$
4532 measured reflections	$l = -15 \rightarrow 15$

Refinement

$w = 1/[\sigma^2(F_0^2) + (0.0762P)^2]$
+ 0.0364P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\text{max}} = 0.36 \text{ e Å}^{-3}$
$\Delta \rho_{\min} = -0.24 \text{ e Å}^{-3}$

Figure 3
The stepped structure of the sheet, comprising ribbons which are hydrogen bonded (dotted lines) *via* water molecules.

Table 1Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
N12−H11···O2 ⁱ	0.86 (3)	2.13 (3)	2.870 (2)	143 (2)
$N12-H11\cdots O2^{ii}$ $N12-H12\cdots O2^{ii}$	0.80 (3)	1.99 (2)	2.889 (2)	172 (2)
$N13-H13\cdots N3^{ii}$	0.91(3)	2.01(3)	2.922 (2)	175 (2)
$N1-H1\cdots O21^{iii}$	0.83(2)	1.95 (2)	2.775 (2)	173 (2)
$N4-H2\cdots O14^{ii}$	0.88(2)	2.07(2)	2.9482 (19)	177 (2)
N4−H3···O14	0.91(3)	2.01(2)	2.8285 (19)	149 (2)
O21-H21···N11	0.84(3)	1.94(3)	2.785 (2)	177 (2)
$O21-H22\cdots O2^{iv}$	0.81(3)	2.03 (3)	2.826 (2)	170 (2)

Symmetry codes: (i) x, y + 1, z + 1; (ii) -x + 2, -y, -z + 1; (iii) x, y - 1, z - 1; (iv) x - 1, y + 1, z + 1.

All H atoms were located [C-H = 0.95 (2)-0.96 (2), N-H = 0.83 (2)-0.91 (3) and O-H = 0.95 (2)] in a difference map and were refined isotropically.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting 'Control and Prediction of the Organic Solid State' (URL: www.cposs.org.uk).

References

Bruker (1998). SMART (Version 5.625) and SAINT (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.

Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059–1064.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

All H-atom parameters refined